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CO2 Monitoring Mission (CO2M)

Planned by Copernicus Programme
Fossil fuel carbon emissions
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Capabilities of MVS capacity

1.5.1 Stepwise approach for a CO> emissions MVS capacity

The need and capabilities for a Monitoring and Verification Support capacity have been illustrated
in previous sections using projections of emissions based on current inventories and two plausible
scenarios. These analyses have highlighted the necessity for this system to properly address the
following set of capabilities:

C1l. Detection of hot spot. A hot spot is defined as a small area surrounded by a strong CO>
concentration gradient, because the area contains a large emitting CO> source. This can be a
large power plant, a megacity or any other activity characterized by strong CO> emissions with
different time evolution;

C2. Monitoring the emissions of the hot spot. Consecutive measurements are needed to link the
measured emission level to previous measurements and to monitor local emission reductions of
the activities within the hot spot. The accuracy of the measurements must ensure the capability
to attribute COz emissions anomalies relative to the CO2> concentration background level;

C3. Assessing emission changes against local reduction targets. This concerns the monitoring
of the implemented emission reduction strategies on the hot spots, which all add up to achieve
NDC targets. In the EU this requires the monitoring, at the most appropriate time scale, of not
only the point source facilities (which are under the Emissions Trading System) but also the
megacities with peak emissions of transport and buildings;

C4. Assessing the national emissions and changes with 5 year time steps. This requires
the entire screening of the full area covered by the country, in order to account for changes in
emission patterns with new or occasional hotspots.

iLab

VRIJE
UNIVERSITEIT
e AMSTERDAM

0
0
0
w



Capabilities of MVS capacity

Assessments require "
High resolution Modelling ,
of CO2M Images

1.5.1 Stepwise approach for a CO> emissions MVS capacity

The need and capabilities for a Monitoring and Verification Support capacity have been illustrated
in previous sections using projections of emissions based on current inventories and two plausible
scenarios. These analyses have highlighted the necessity for this system to properly address the
following set of capabilities:

C1l. Detection of hot spot. A hot spot is defined as a small area surrounded by a strong CO>
concentration gradient, because the area contains a large emitting CO> source. This can be a
large power plant, a megacity or any other activity characterized by strong CO> emissions with
different time evolution;

C2. Monitoring the emissions of the hot spot. Consecutive measurements are needed to link the
measured emission level to previous measurements and to monitor local emission reductions of
the activities within the hot spot. The accuracy of the measurements must ensure the capability
to attribute COz emissions anomalies relative to the CO2> concentration background level;

C3. Assessing emission changes against local reduction targets. This concerns the monitoring
of the implemented emission reduction strategies on the hot spots, which all add up to achieve
NDC targets. In the EU this requires the monitoring, at the most appropriate time scale, of not
only the point source facilities (which are under the Emissions Trading System) but also the
megacities with peak emissions of transport and buildings;

C4. Assessing the national emissions and changes with 5 year time steps. This requires
the entire screening of the full area covered by the country, in order to account for changes in
emission patterns with new or occasional hotspots.
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High Resolution over Berlin

Modelling System:
* CMAQin 2 km x 2 km resolution
* 200 km area around Berlin
* Use simulated CO2M images
* Assess accuracy requirement for XCO2 alone
* And in conjunction with NO2
* Assess added value of a multi-angular polarimeter (MAP)

* Simulating 24 hour period before overpass ...
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Simulated Random and Systematic Errors over Berlin
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Modelling Chain
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Mode

XCO

e T

2 2,initial Surf Cc02 lateral
eCD2 = eCO2,energy + eCOQ,other + eCO2,bio
eCDQ,bio = B(Xbio)
Surf eCOQ - TSurf,energy eCDQ,energy + TSurf,other eCDQ,other + TB, (Xbio)
€0n . emissions over 24 hours
oo, . lateral inflow over 24 hours
XCO, . ... : column 24 hours before overpass (ignored)
T . atmospheric Transport and CO2M sampling
B . terrestrial biosphere model

Compact Notation:

XCO =M x

2

elling Chain for XCO2
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Quantitative Network Design Method

know already

Ceo ™t =M C@) M+ Clxo) '

o(1)2 =NCON" + 0 (ymod)? . Coverage 1)

Performance o ()% =NC@o)N'" + o (ymoa)> - (5)
“uncertainty o (yo) o (yo) Notation:
reductlon y: vector of target quantities

d: vector of observations

X: vector of unknowns/control variables

d=M(x): model linking unknowns to observations
y=N(x): model linking unknowns to target quantities

C: covariance of uncertainty
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Model for Natural Fluxes

* Newly developed (W. Knorr)

* Based on Knorr and Heimann (1995), used in Kaminski et al. (2017)

* Runs on transport model grid (2 km by 2 km)

* Simulates Net and Gross (GPP, eocsystem respiration) Fluxes at hourly time step

* Diagnostic

* Driven by JRC-TIP FAPAR and climate (Incoming solar/thermal radiation, precipitation, 2m-
temperature) from ERAS

* Calibrated 5 parameters against complete ensemble of Tier-1 166 Fluxnet 2005 sites

* Prior parameter uncertainty 20%

GPP, 2008-02-03 hour 10 NEP, 2008-02-03 hour 10 NEP, 2008-02-03 hour 12

NEP, 2008-07-03 hour 10
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Energy Generation

Other Sector

Power plants (Berlin)

Fossil fuel emissions

TNO data set (from CHE, see also Super et al, ACP, 2020) Sl o =
Detailed plume simulation (VDI guidelines implemented by == T i

G. Kuhlmann) for largest power plants and some Vattenfall = 'R’/ﬁ
plants within Berlin: 11 plants in total; Stack information S ?

from A. Kerschbaumer (Berlin Kataster) and G. Kuhlmann.  “f

Standard Vertical Profile (Bieser et al., 2011) for the remainder :::: p

Further input not (yet) used: Power Production from large :

Plants (F. Sandau, Umweltbundesamdt).
leed temporal prOﬁle OS Carbon emission uncertainty
Prior Uncertainty: 20% — —iﬂw sy

TNO data set (from CHE, see also Super et al, ACP, 2020):
“High resolution (1/60° x 1/120°; ~1x1km) regional gridded
emission inventory for a zoom domain in Europe”

Fixed temporal profile /
Prior Uncertainty: 20%
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Plumes from Power Plants

emissions from 12 largest emitting power plants

Change of XCO2 (2008-02-03) w.r.t. Change of XCO2 (2008-07-03) w.r.t.

emissions from 12 largest emitting power plants
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XCO2 Jacobian (Brandenburg Gate

d(XCO2)/d(emission) w.r.t. surface emissions, 2008-07-03T110000
XCO2-location=13.3777/52.5163, min/max=0.000E+00/1.214E-07
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Footprint of XCO2 over Brandenburg Gate in summer
* Shows for each grid cell sensitivity of the XCO2 over Brandenburg Gate wrt to emission into that grid cell.
* Change in ppm for an emission of 1kgC
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XCO2 Jacobian (Brandenburg Gate)

And with lateral inflow

d(XCO2)/d(emission) w.r.t. influx from western, 2008-07-03T110000

CMAQ vertical level

XCO2-location=13.3777/52.5163, min/max=0.000E+00/4.016E-08
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d(XCO2)/d(emission) w .t. influx from northern, 2008-07-03T110000
XCO2-location=13.3777/52.5163, min/max=0.000E+00/1.411E-15
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d(XCO2)/d(emission) w.r.t. influx from eastern, 2008-07-03T110000
XCO2-location=13.3777/52.5163, min/max=0.000E+00/3.335E-08
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Multiplied with TNO emission field: Decomposition of XCO2 signal

OS emission contribution to XCO, at Brandenburger-Tor
AXCO>=0.111ppm, 2008-07-03
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* For each grid cell: XCO2 change (ppm) from emission (TNO) into that grid cell N
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Multiplied with TNO emission field: Decomposition of XCO2 signal

OS emission contribution to XCO-> at Brandenburger-Tor
(2008-07-03)
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Decomposition of XCO2 simulation over Brandenburg Gate (Summer) = -\i
* For each grid cell: XCO2 change (ppm) from emission (TNO) into that grid cell N
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EG NO2/Carbon emission ratio
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r: emission ratio, provides link to CO2

Boxberg

Schw. Pumpe

Uniper
Schkopau
PCK Schwedt
Arcelor Mittal
Reuter-West

* Combined use of XCO2 and NO2 observations provides constraint on r

* We need a prior and an uncertainty in r

* Can we transfer what we learn from one plant to
* the other plants of the same type (e.g. fuel/washer)?
* all other plants?

* TNO data base provides reported “r”’ for each plant (prior)
* ‘r” in TNO data base shows large variability between plants

SKW Piesteritz

VEO Oderbr.

CEMEX Zement
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Emission Factor Uncertainty

* The prior uncertainty for the ratio of the emission factors is calculated
from reported emission factor uncertainties averaged for several countries,
following the approach used by Super et al. (2020)
* Relative Uncertainty in individual emission factors for CO2 and NOX
* provided by Ingrid Super (TNO)
* r= NOx/CO2 approximated by normal distribution
* running three cases:
* unknown scaling factor per plant
* unknown scaling factor per fuel type (solid, liquid, gaseous)
* unknown scaling factor for all plants (average uncertainty)

CcO2 NoXx Nox/CO2
Solid 0.03 |normal 0.093|lognormal 0.098
Liquid 0.031 normal 0.243 | normal 0.245
Gaseous 0.015 normal 0.924 |lognormal 0.924
Biomass 0.05 |normal 0.231 |lognormal 0.236
Waste 0.111 |[normal
iLab VU & oo £ >esa




Setup Default Experiment

* XCO2 retrieval uses MAP
* no NO2
* 20% prior uncertainty for each power plant

* 20% prior uncertainty for each natural flux parameter

* 20% prior uncertainty of other sector for Berlin (52.8% at pixel
level)

* 1 ppm uncertainty of lateral inflow, fully correlatated at 10
km horizontally, otherwise uncorrelated
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Experiment NOZ2 (uniform) Summer

Uncertainty reduction at power plants (2008-07-03)

Uncertainty reduction other sector (2008-07-03)
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SKW Piesteritz
VEO Oderbr.
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Klingenb.
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Adding NO2:
® Added value for power plants larger in winter,
where XCO2 leaves more scope for improvement and where lifetime is longer
® But combined performance for XCO2 and NO2 better in summer
Iap gmEa VUS s
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Prior/Posterior emission uncertainty (OS, 2008-07-03)
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Prior/Posterior emission uncertainty (OS, 2008-07-03)
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Effect of adding NO2 on other sector at scale of Berlin districts:

® Stronger where emissions are large
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Experiments

Table 3: List of experiments

##  name XCO2 NO?2 Comment
1 EPFMAP (default) NN w/ MAP . -
2 PMIF PMIF - -
3 EPF NN w/o MAP - -
4 NO2 per type NN w/ MAP o, per fuel type -
5 NO2 per plant NN w/ MAP o, per plant -
6 NO2 uniform NN w/ MAP o, uniform —
7 1/2 plant prior o NN w/ MAP - -

We have seen experiments 1 and 6
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Uncertainty Reduction (2008-02-03)
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Performance for power plants:
Strong uncertainty reduction for large power plants in default case
Performance of default case better than that of IUP XCO2 error files for all plants
The MAP has a strong impact in winter, where the performance w/o MAP is low,

its impact in summer is moderate
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Even with reduced prior uncertainty strong uncertainty reduction for large plants,

in particular in winter
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Results Overview other sector
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Performance for the other sector:
® Performance of default scenario better than that of IUP XCO2 error files on all scales

® The MAP has a strong impact, the added value is higher in winter, where the performance w/o MAP is low
® The smaller the scale the larger the effect of adding NO2
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The differentiation of uncertainty in the emission factor has a small impact over Berlin and some of its districts
Reducing the prior uncertainty on plant emissions yields small improvement for the other sector .



Summary and Conclusions

Developed error parameterisation formula based on artificial neural network for XCO2 w/ and w/o MAP

Developed modelling chain from parameters to XCO2 and NO2 observations

Full Jacobian allows

* decomposition of XCO2 column in terms of spatial emission impact

* rigorous uncertainty propagation (Quantitative Network Design approch) to assess CO2M observation impact
Assessments include temporal and spatial scales typically not covered by inventories

High XCO2 constraint on emissions from larger power plants

XCO2 constraint on other sector emissions increasing with spatial scale from 2km (uncertainty reduction: <1%
average; ~8% maximum) to scale of Berlin district (~2-18 %) to the scale of Berlin (28-48%).

Higher XCO2 constraint in summer on both, power plants and other sector

The MAP has a strong impact in winter, where the performance w/o MAP is lower, its impact in summer is moderate
Reducing prior uncertainty yields slightly weaker but still strong XCO2 impact for large plants (in particular in winter)
and slightly higher impact on the other sector

NO2 powerful additional constraint for power plants and other sector

Adding NO2 has particularly high impact

* in winter when XCO2 leaves more scope for improvement and lifetime is longer

* on other sector on smaller scales and on smaller plants where XCO2 leaves more scope for improvement

* where emission ratio is high

Overall best performance for combination of XCO2 and NO2 in summer

Correlations in the uncertainties of NO2/C emission factors of plants have a moderate effect on added value of NO2
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